On quadratization of pseudo-Boolean functions
نویسندگان
چکیده
We survey current term-wise techniques for quadratizing high-degree pseudo-Boolean functions and introduce a new one, which allows multiple splits of terms. We also introduce the first aggregative approach, which splits a collection of terms based on their common parts.
منابع مشابه
Quadratizations of symmetric pseudo-Boolean functions: sub-linear bounds on the number of auxiliary variables
The problem of minimizing a pseudo-Boolean function with no additional constraints arises in a variety of applications. A quadratization is a quadratic reformulation of the nonlinear problem obtained by introducing a set of auxiliary binary variables which can be optimized using quadratic optimization techniques. Using the well-known result that a pseudoBoolean function can be uniquely expresse...
متن کاملQuadratization of Symmetric Pseudo-Boolean Functions
A pseudo-Boolean function is a real-valued function f(x) = f(x1, x2, . . . , xn) of n binary variables; that is, a mapping from {0, 1}n to R. For a pseudo-Boolean function f(x) on {0, 1}n, we say that g(x, y) is a quadratization of f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary binary variables y1, y2, . . . , ym such that f(x) = min{g(x, y) : y ∈ {0, 1}m} for all x ∈ ...
متن کاملQuadratization and Roof Duality of Markov Logic Networks
This article discusses the quadratization of Markov Logic Networks, which enables efficient approximate MAP computation by means of maximum flows. The procedure relies on a pseudo-Boolean representation of the model, and allows handling models of any order. The employed pseudo-Boolean representation can be used to identify problems that are guaranteed to be solvable in low polynomial-time. Resu...
متن کاملPersistency for higher-order pseudo-boolean maximization
A pseudo-Boolean function is a function from a 0/1-vector to the reals. Minimizing pseudo-Boolean functions is a very general problem with many applications. In image analysis, the problem arises in segmentation or as a subroutine in task like stero estimation and image denoising. Recent years have seen an increased interest in higher-degree problems, as opposed to quadratic pseudo-Boolean func...
متن کاملON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1404.6538 شماره
صفحات -
تاریخ انتشار 2012